A unified architecture for quantum lookup tables 2406.18030

Shuchen Zhu

Aarthi Sundaram Microsoft Quantum

Guang Hao Low Google Quantum

What is quantum lookup table

- It stores classical data and allows queries to be made in superposition
- It is a general-purpose architecture for the implementation of unstructured quantum oracles

$$|i\rangle|b\rangle \longrightarrow O_{\chi} \longrightarrow |i\rangle|b \cdot x_i\rangle$$

Why quantum lookup table?

• Most quantum algorithms are naturally phrased as oracle query algorithms

$$\begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} = O_x = U_1 = O_x = \cdots = O_x = U_k$$

- Oracle provides description of Hamiltonian in quantum simulation
- Oracle encodes classical datasets into quantum state in quantum machine learning
- Essential to achieve quantum computational advantage
- Quantum state preparation is expensive; the overhead may negate the quantum advantage

Prior arts

Quantum Computation and Quantum Information

MICHAEL A. NIELSEN and ISAAC L. CHUANG

Fan-out

PHYSICAL REVIEW X 8, 041015 (2018)

Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity

Ryan Babbush,^{1,*} Craig Gidney,² Dominic W. Berry,³ Nathan Wiebe,⁴ Jarrod McClean,¹ Alexandru Paler,⁵ Austin Fowler,² and Hartmut Neven¹ ¹Google Inc., Venice, California 90291, USA ²Google Inc., Santa Barbara, California 93117, USA ³Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia ⁴Microsoft Research, Redmond, Washington 98052, USA ⁵Institute for Integrated Circuits, Linz Institute of Technology, 4040 Linz, Austria

PHYSICAL REVIEW A 78, 052310 (2008)

Architectures for a quantum random access memory

Vittorio Giovannetti,¹ Seth Lloyd,² and Lorenzo Maccone³ ¹NEST CNR-INFM & Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy ²MIT, Research Laboratory of Electronics and Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA ³QUIT—Quantum Information Theory Group, Dipartimento di Fisica "A. Volta," Università di Pavia, via A. Bassi 6, I-27100 Pavia, Italy (Received 7 August 2008; published 5 November 2008)

QRAM

() Uantum the open journal for quantum science

PAPERS PERSPECTIVE

Trading T gates for dirty qubits in state preparation and unitary synthesis

Guang Hao Low^{1,2}, Vadym Kliuchnikov^{1,2}, and Luke Schaeffer^{1,3,4}

¹Quantum Architectures and Computation, Microsoft Research, Washington, Redmond, USA ²Azure Quantum, Microsoft, Washington, Redmond, USA

³Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

⁴Joint Center for Quantum Information and Computer Science, University of Maryland, Maryland, College Park, USA

Fan-out architecture

• Linear infidelity

Nielsen, Michael A., and Isaac L. Chuang. *Quantum computation and quantum information*. Cambridge university press, 2010.

Bucket-brigade (QRAM) architecture

CSWAP router \mathbf{X}_{j}

(a)

• Low query time $O(\log N)$

(b)

- Low infidelity $O(\log^2 N)$
- High T-gate count: O(N)

Giovannetti, Vittorio, Seth Lloyd, and Lorenzo Maccone. "Architectures for a quantum random access memory." *Physical Review A* 78, no. 5 (2008): 052310. Hann, Connor T., Gideon Lee, S. M. Girvin, and Liang Jiang. "Resilience of quantum random access memory to generic noise." PRX Quantum 2, no. 2 (2021): 020311.

Bucket-brigade (QRAM) circuit

- All-to-all connectivity assumption
- Assume same gate error

Hann, Connor T., Gideon Lee, S. M. Girvin, and Liang Jiang. "Resilience of quantum random access memory to generic noise." PRX Quantum 2, no. 2 (2021): 020311.

QROM architecture

- Low qubit count $O(\log N)$
- High query time O(N)
- High infidelity O(N)
- High T-gate count: O(N)

Babbush, Ryan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. "Encoding electronic spectra in quantum circuits with linear T complexity." *Physical Review X* 8, no. 4 (2018): 041015.

SELECT-SWAP architecture

- Sublinear qubit count $O(\sqrt{N})$
- Sublinear query time $O(\sqrt{N})$
- Fixed high infidelity O(N)

 $|x\rangle$

 $|0\rangle$

 $|a_x\rangle$

• Sublinear T-gate count: $O(\sqrt{N})$

Low, Guang Hao, Vadym Kliuchnikov, and Luke Schaeffer. "Trading T gates for dirty qubits in state preparation and unitary synthesis." *Quantum* 8 (2024): 1375.

Summary of prior art

Architecture	Infidelity	${f Query-depth}$	\mathbf{Qubits}	$\mathbf{T} ext{-gates}$	Layout	
QRAM [19, 24]	$O(\log^2 N)$	$O(\log N)$	O(N)	O(N)	all-to-all	
QROM [4]	O(bN)	O(N)	$O(\log N + b)$	O(N)	all-to-all ^a	
SELECT-SWAP [23]	O(bN)	$O(\frac{N}{\lambda} + \log \lambda)$	$O(\log N + b\lambda)$	$O(\tfrac{N}{\lambda} + b\lambda)$	all-to-all	

- Can we drop the all-to-all assumption in the analysis?
- Can we preserve the good properties from all these frameworks?

Our result

Architecture	Infidelity	$\mathbf{Query-depth}$	\mathbf{Qubits}	$\mathbf{T} ext{-gates}$	Layout	
QRAM [19, 24]	$O(\log^2 N)$	$O(\log N)$	O(N)	O(N)	all-to-all	
QROM [4]	O(bN)	O(N)	$O(\log N + b)$	O(N)	all-to-all ^a	
SELECT-SWAP [23]	O(bN)	$O(\tfrac{N}{\lambda} + \log \lambda)$	$O(\log N + b\lambda)$	$O(\tfrac{N}{\lambda} + b\lambda)$	all-to-all	
general single-bit (Sec. III)	$\tilde{O}(\frac{\gamma N}{\lambda})$	$O(\frac{N}{\lambda}\log N)$	$O(\log \frac{N}{\lambda} + \lambda)$	$O(\tfrac{N}{\gamma} + \tfrac{N}{\lambda} \log \tfrac{N}{\lambda} + \lambda)$	local, planar	
general multi-bit parallel (Sec. V)	$\tilde{O}(\frac{b\gamma N}{\lambda})$	$O(\frac{N}{\lambda}(\log bN))$	$O(\log \frac{N}{\lambda} + b\lambda)$	$O(\frac{N}{\lambda}\log\frac{N}{\lambda} + \frac{bN}{\gamma} + b\lambda)$	local, planar	
general multi-bit sequential (Sec. V)	$\tilde{O}(\frac{b\gamma N}{\lambda}+b^2)$	$O(\frac{N}{\lambda}\log(bN) + b)$	$O(\log \frac{N}{\lambda} + b\lambda)$	$O(\frac{N}{\gamma} + \frac{N}{\lambda}\log\frac{N}{\lambda} + b\lambda)$	local, planar	
single-bit (Sec. III)	$\tilde{O}(N^{3/4})$	$O(\sqrt{N}\log N)$	$O(\sqrt{N})$	$O(N^{3/4})$	local, planar	
parallel multi-bit (Sec. V)	$\tilde{O}(bN^{3/4})$	$O(\sqrt{N}\log N)$	$O(b\sqrt{N})$	$O(bN^{3/4})$	local, planar	
sequential multi-bit (Sec. V)	$\tilde{O}(bN^{3/4} + b^2)$	$O(\sqrt{N}\log(bN) + b)$	$O(b\sqrt{N})$	$O(N^{3/4} + b\sqrt{N})$	local, planar	

- Planar layout
- Sublinear scalings for local connectivity
- Fine-tuned error dependence
- Unified framework
- Extend to large word size

Error type	Error rate symbol
Idling	ε_I
Qubit	$arepsilon_Q$
Long range	ε_L
SWAP gate	ε_s
CSWAP gate	ε_{cs}
CNOT gate	ε_c
CCNOT gate	ε_{cc}

Planar layout for single CSWAP router

(c)

Planar layout for QRAM

	L_8		t_3		R_7				L_{14}		t_6		R_{13}	
t_8	in_8	R_3	in_3	L_3	in_7	t_7		t_{14}	in_{14}	R_6	in_6	L_6	in_{13}	t_{13}
	R_8				L_7	a_0	bus	a_1	R_{14}				L_{13}	
			L_1		a_2		input		a_2		R_2			
		t_1	in_1			L_0	in_0	R_0			in_2	t_2		
	L_9		R_1		R_{10}		t_0		L_{11}		L_2		R_{12}	
t_9	in_9	L_4	in_4	R_4	in_{10}	t_{10}		t_{11}	in_{11}	L_5	in_5	R_5	in_{12}	t_{12}
	R_9		t_4		L_{10}				R_{11}		t_5		L_{12}	

• This layout can be extended to our unified framework.

Ideal construction

Algorithm 1 Pseudocode for quantum data lookup on memory of size N, partition size λ , and CNOT tree size γ . This corresponds to the high-level routing scheme shown in Figure 8. SETROUTER(a, r) sets the address bit(s) a to router(s) of type $r \in \{\mathbf{X}, \mathbf{L}\}$ as described in Section II. For each SETROUTER operation, a path connected by its corresponding routers is formed. ROUTEDATA(d, p) moves data qubit d from one end to the other end of the path p.

Main result

Theorem III.1. Consider the quantum data lookup structure with the high-level scheme in Fig. 8 with N memory locations. Let $n = \log N$, $\lambda = 2^{n-d}$ be the partition size and $\gamma = 2^{n-d-d'}$ be the size of a CNOT tree with $d' \leq d \leq n$. The infidelity of this circuit is

$$O\left(\varepsilon_L\left(\frac{\gamma N}{\lambda} + \frac{N}{\lambda}\log\frac{\lambda}{\gamma}\right) + \varepsilon_s\log\frac{\lambda^2}{\gamma} + \varepsilon_I\left(\frac{N}{\lambda}\log N\left(\log\frac{N}{\gamma} + \gamma + \log\frac{\lambda}{\gamma}\right) + \text{polylog}\,\lambda\right) + \varepsilon_c\frac{\gamma N}{\lambda} + \varepsilon_{cc}\frac{N}{\lambda}\log\frac{N}{\lambda} + \varepsilon_{cc}\frac{N}{\lambda}\log\frac{N}{\lambda} + \varepsilon_{cs}\left(\frac{N}{\lambda}\log\frac{\lambda}{\gamma} + \log^2\frac{\lambda}{\gamma} + \log^2\lambda\right)\right).$$
(3)

Moreover, the T count for this design is $O(\frac{N}{\gamma} + \frac{N}{\lambda} \log \frac{N}{\lambda} + \lambda)$, and its qubit count is $O(\log \frac{N}{\lambda} + \lambda)$.

Moreover, the T count for this design is $O(\frac{N}{\gamma} \bigcup_{\gamma}^{N} \bigcup_{$

Current progress in the field

Demonstrating Coherent Quantum Routers for Bucket-Brigade Quantum Random Access Memory on a Superconducting Processor

Sheng Zhang,^{1,2,3} Yun-Jie Wang,⁴ Peng Wang,^{1,2,3} Ren-Ze Zhao,^{1,2} Xiao-Yan Yang,^{1,2} Ze-An Zhao,^{1,2} Tian-Le Wang,^{1,2} Hai-Feng Zhang,^{1,2} Zhi-Fei Li,^{1,2} Yuan Wu,^{1,2} Hao-Ran Tao,⁵ Liang-Liang Guo,⁵ Lei Du,⁵ Chi Zhang,⁵ Zhi-Long Jia,⁵ Wei-Cheng Kong,⁵ Zhuo-Zhi Zhang,^{1,2,3} Xiang-Xiang Song,^{1,2,3} Yu-Chun Wu,^{1,2,6} Zhao-Yun Chen,^{6,*} Peng Duan,^{1,2,†} and Guo-Ping Guo^{1,2,5,‡}

 ¹Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, 230026, China
 ²CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
 ³Suzhou Institute of the Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
 ⁴Institute of the Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230088, China
 ⁵Origin Quantum, Hefei, Anhui 230088, China
 ⁶Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China (Dated: June 1, 2025)

A distillation–teleportation protocol for fault-tolerant QRAM

Alexander M. Dalzell,¹ András Gilyén,² Connor T. Hann,¹ Sam McArdle,¹ Grant Salton,^{1,3} Quynh T. Nguyen,⁴ Aleksander Kubica,^{1,5} Fernando G.S.L. Brandão^{1,6}

AWS Center for Quantum Computing, Pasadena, CA, USA
 HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
 ³ Amazon Quantum Solutions Lab, Seattle, WA, USA
 ⁴ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
 ⁵ Yale Quantum Institute & Department of Applied Physics, New Haven, CT, USA
 ⁶ Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA

Productionizing Quantum Mass Production

William J. Huggins,^{1,*} Tanuj Khattar,¹ and Nathan Wiebe^{2, 3, 4}
¹Google Quantum AI, Mountain View, CA, USA
²Department of Physics, University of Toronto, Toronto, ON, Canada
³Department of Computer Science, University of Toronto, Toronto, ON, Canada
⁴Pacific Northwest National Laboratory, Richland, WA, USA (Dated: June 6, 2025)

- How to benefit from qutrit/qudit.
- How to do QRAM simulation on a real machine to gain better intuition.
- If the distillation-teleportation's bottleneck is classical, can we improve it to make it work?
- Dream: $O(\log N)$ infidelity for planar layout.

Duke